3.3: Higher-Order Linear, Homogeneous Equations with Constant Coefficients Complex Roots

Theorem 3. (Complex Roots)
If the characteristic equation (2) has a complex root $r=a+i b$, then the part of a general solution of the differential equation (1) corresponding to r is of the form

$$
e^{a x}\left(c_{1} \cos b x+c_{2} \sin b x\right)
$$

Exercise 1. Find the particular solution to the initial value problem

$$
y^{\prime \prime}-4 y^{\prime}+5 y=0, \quad y(0)=1, y^{\prime}(0)=5
$$

Exercise 2. Find the general solution to

$$
y^{(4)}+4 y=0 .
$$

Theorem 4. (Repeated Complex Roots)
If the characteristic equation (2) has a repeated complex root $r=a+i b$ of multiplicity k, then the part of a general solution of the differential equation (1) corresponding to r is of the form

$$
\sum_{p=0}^{k-1} x^{p} e^{a x}\left(c_{p} \cos b x+d_{p} \sin b x\right) .
$$

Exercise 3. Find the general solution to

$$
y^{(6)}-12 y^{(5)}+63 y^{(4)}-184 y^{(3)}+315 y^{\prime \prime}-300 y^{\prime}+125 y=0
$$

which has characteristic equation

$$
\left(r^{2}-4 r+5\right)^{3}=0
$$

